
JOURNAL OF COMPUTATIONAL PHYSICS 60, 534-548 (1985) 

Solution of a Stefan Problem in the Theory of Laser 
Welding by the Method of Lines 

MICHAEL DAVIS AND F’HIROZE KAPADIA 

Department of Physics, University of Essex, 
Colchester, United Kingdom 

AND 

JOHN DOWDEN 

Department of Mathematics, University of Essex, 
Colchester, United Kingdom 

Received March 2, 1984; revised November 6, 1984 

Use of a laser beam as the source of energy for penetration welding gives rise to a long, thin 
cylindrical hole surrounded by molten metal. Material moves from the front to the rear of the 
hole as the workpiece is translated relative to the laser, by flowing around the hole. A com- 
puter program has been written which solves the equations governing a 2-dimensional steady- 
state mathematical model in which the only spatial variations considered are in a plane per- 
pendicular to the axis of the hole. The program uses the method of lines applied to a refor- 
mulation of the problem suitable for solution by the isotherm migration technique. Computed 
results have been found to agree satisfactorily with those derived from an analytical model 
valid for low speeds of welding, and at higher speeds they give results similar to what is obser- 
ved in practice, although lack of experimental evidence precludes a detailed quantitative com- 
parison at present. 0 1985 Academic Press, Inc. 

1. THE MATHEMATICAL MODEL 

One of the many purposes for which lasers are used in industry is to supply the 
energy for welding; they are particularly well suited to penetration welding, where a 
laser beam is directed nearly perpendicularly to the workpiece, which is then moved 
in its own plane relative to the laser. A hole (usually referred to as a “keyhole”) is 
created, and it is surrounded by molten metal. The weld forms as this liquid metal 
cools and solidifies downstream of the keyhole. A cross section of the keyhole per- 
pendicular to the laser beam is shown in Fig. 1. 

Mathematical models of the heat flow in penetration welding have been made by 
many authors [ 1,2,3] and analysis of this kind has been extended by Dowden, 
Davis, and Kapadia [4] to include a description of the flow of liquid metal around 
the keyhole from upstream to downstream of the laser beam. Approximate 
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FIG. 1. Cross-section of the keyhole and molten region. The coordinate system employed is shown. 

analytical solutions were presented, valid essentially for rather low speeds of trans- 
lation of the workpiece. Four models were described which differed in the way in 
which the temperature dependence of the viscosity of the molten metal was taken 
into account. In qualitative terms there was in fact not a great deal of difference 
between the results for the more complicated assumptions when compared with the 
simplest assumption, that of a viscosity independent of temperature. It is the pur- 
pose of this paper to present a numerical program that solves this particular 
problem (with the assumption of a constant viscosity) over a range of speeds of 
translation U that includes all those used in practice. It was a weakness of the 
analytical solutions that they only just covered the lower end of this range. 

The mathematical description employed here is the same as that of [4]. The 
mathematical parameters, including the viscosity p are all assumed to be constants 
in each of the two regions, but the thermal conductivities k, and k,, as well as the 
thermal diffusivities rcs and rcL, of the solid and liquid regions respectively, are not 
necessarily taken to be the same. The density of the two regions, however, is taken 
to have the same value p for both states, in the interests of simplicity. Position in 
space is described by polar coordinates (r, 0) relative to axes moving with the laser 
beam, as shown in Fig. 1. Temperature in the metal is described by T with a 
vapourising temperature TV, a melting temperature T,, and a temperature To far 
from the laser; the latent heat of fusion is L. Velocity is described by means of a 
stream function Ic/ so that the radial velocity is a$/rae and the azimuthal velocity is 
-a$/&. Only a steady-state solution in these axes is sought. 

With this description the complete set of equations and conditions are as follows 
[4]: In the solid region the temperature distribution is governed by the differential 
equation 

1 - 
i 

aTa* aw =Ic vzT ----_ 
1 r ar ae a9 ar ' ' (1) 
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while in the liquid region the temperature equation is 

1 - 
i 
Ada* aw =Ic V2T ----- 

r ar a0 ae ar I L (2) 

and the Navier-Stokes equations for the fluid velocity of the liquid metal can be 
reduced to the 2-dimensional vorticity equation 

P av=* ati av=* a* =p.plc/. - 

i 
----- 

r ar a0 ae at- I 
The boundary conditions are 

T= T, at r = a, 
a* a=* 
-=YP- ar 

(3) 

(4) 

* = Ur sin 0 \ 

[kVT]~~~id~VS+~~~=O 

at S(r, 0) = 0, 

(5) 
> 

T-r To asr-rco. i 

In conditions (5) S(r, 0) = 0 is the equation of the interface between the solid and 
liquid regions. Solutions are sought for which T is an even function of 8, and $ is 
odd. These two symmetries can be used to reduce the amount of computer memory 
required in the calculation of the solution. 

Equations (1) and (2) for the temperature distribution and Eq. (3) for the stream 
function have to be solved subject to the boundary conditions (4). These are 
statements of the requirement that the sides of the keyhole should be a stream sur- 
face at the temperature of vapourisation of liquid metal, on which no tangential 
stress is being exerted. The assumption of an isothermal surface suggests that there 
will be no surface tension gradients from thermal causes. It is just possible that sur- 
face active elements might produce them in the way that can happen on the surface 
of the weld pool in conventional welding [5 3, but the possibility is ignored here. A 
small amount of material in fact is vapourised at the keyhole surface; it can be 
ignored for the purposes of calculating the motion of the molten metal, but is 
important for the physics of the keyhole. Its vapourisation provides an ablation 
pressure [b] whose variation round the surface of the keyhole drives the motion of 
the liquid metal. The first two parts of condition (5) require both components of 
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velocity to be continuous across the solid/liquid interface, and the third part is the 
heat-flow condition. In the solid region T tends to a constant value as r -+ cc and 
the stream function $ is everywhere Ur sin 8. 

2. METHOD OF SOLUTION 

The technique known as the method of lines (or semidiscretisation) was used to 
solve (l)-(3). It is essentially a technique for replacing a system of partial differen- 
tial equations in two or more independent variables by an approximate system of 
ordinary differential equations in one of these variables. Other methods such as 
finite differences, finite element, or implicit methods seemed either unsuitable or 
impractical for solving this particular set of partial differential equations with their 
boundary conditions; with these methods the main difficulty arises in handling the 
moving boundary at the solid/liquid interface, as the program code which results 
tends to be very expensive on CPU time. 

The method of lines has a number of advantages over the other algorithms, 
namely that it can be used to solve every type of partial differential equation, 
whether elliptic, parabolic, or hyperbolic, as well as ordinary differential equations 
other than those of eigenvalue type. The overall implementation on a computer is 
relatively easy and it is not expensive on CPU time or memory for a given run. 
There is, however, one drawback, which is that the domain of the independent 
variables must be a topological rectangle. This disadvantage can usually be avoided 
by a transformation of the coordinate system; currently, attempts are being made to 
overcome the problem of arbitrarily shaped boundaries and to develop dynamic 
automatic line spacing algorithms for non-linear problems with moving wavefronts 
to gain runtime efficiency. 

In one space dimension, the Stefan problem can be illustrated by means of the 
following differential equations 

The conditions at the interface as x --t s(t) are 

T, = T, = T, 

k!!ikET,=-LdS 
2 ax 1 ax ’ dt’ 

(6) 

where k is the thermal conductivity, p is the density, C the heat capacity, L the 
latent heat, and T the temperature. The subscript (1) refers to the solid region and 
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(2) to the liquid region. There are also the boundary conditions T= T,, at x = 0 and 
T+ T, as x + cc as well as an initial condition at t = 0. It is then necessary to ftnd 
T,(x, t), TAX, t), and s(t). 

There is no difficulty in writing down and solving suitable finite difference 
equations, with intervals Ax and At, in the main parts of the liquid and solid 
regions. The problem arises near the interface, partly due to the discontinuity in the 
temperature gradient, and partly because the coordinate of a new mesh point on 
the line t + At is not known; consequently it is not known in which region the 
points P and Q in Fig. 2 are located. This information is implicit in the differential 
equations and the interface conditions. Usually some iterative process is required to 
obtain a solution of the non-linear system. The resulting finite difference equation 
must be reasonably accurate (i.e., the local truncation error should be small), and 
also the system must be stable, so that as At and Ax +O the computed solution 
tends to the correct solution. In practice the resulting finite difference equations are 
very complex in nature [7, 81. As an alternative, Meyer [9] has used a scheme in 
which the t variable is discretised, and which with the weak solution method has 
been applied to a number of problems [ 10, 111. The approach used here however is 
the isotherm migration technique. In this method the dependent and the indepen- 
dent variables are exchanged. In the Stefan problem a solution for T is sought 
which is expressed as a function of x and t, or by changing the independent variable 
the problem is converted into one in which x is sought as a function of T and t. 
Since (7) shows that the moving boundary (as well as the other two) is an 
isotherm, it becomes a fixed straight line in the new co-ordinate system parallel to 
the t axis, and the free boundary condition appears as a condition at one of the 
boundaries. The isotherm migration technique is particularly suitable for extensions 

x - SW 
Liquid 

+ 
x 

FIG. 2. Relationship between the unknown boundary x= s(t) and the grid points used in 
calculation. 
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of this work to take account of the temperature dependence of most of the material 
parameters; most of them depend on T, which in this formulation is one of the 
independent variables of the computation, not one of the dependent variables. 

Equations (6) with conditions (7) transformed in this way become 

T,,<T<T,, 

x, =o when T= To, 

x2 + co as T+ T,, 

on T= T,, 

at T= T,. 

Crank and Phahle [ 123 used a finite difference method to solve a slightly simpler 
version of this problem and the only difficulty with the technique is that a small At 
is required for stability as the resulting equations are nonlinear. 

Weak solution, finite element, and variational methods have all been used to 
solve Stefan problems. The technique used here however is the method of lines, with 
Lagrangian differentiation formulae. The resulting set of differential equations are 
then solved using the latest developments in initial value algorithms. 

Equations (l)-(3) and the associated boundary conditions can now be transfor- 
med into the new coordinate system (T, 0) so that the problem is described in a rec- 
tangular domain. The moving boundary at the interface is fixed in these coordinates 
and the condition on it becomes a condition at this known, fixed boundary. The 
change of variables from (v, 0) to (T, 0) coordinates is lengthy, but can be perfor- 
med with the aid of the differential relations 

So, for example, 

afw afw 
i 

af a* af a* ar -----= ----- - 
dr a0 ae ar arae 11 aeaT a7- 
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and 
d2T a2r 
s=-s 

The transformation requires that aT/dr # 0; experience with the analytical solution, 
as well as physical expectation, suggests that this will be so. Problems far from the 
keyhole were avoided by giving D a large but finite value when T = To. In practice, 
no difficulties attributable to these causes were experienced in the computation. 

With r and $ as the unknown functions and subscripts T and 8 used to indicate 
partial differention, the equation are as follows: (1) becomes 

KS 2rdoT G-TT t-60 -y,l+----- 
rrT rr+ 

- U(r, sin 8 + r cos 0) = 0; (8) r 

(2) can be written 

XL 
2rd0T 6rTT rBO -r$+l+----- -*e=o; 

rrT rr’, r 

with o = -V”lc/, (3) is 

(9) 

provided that w satisfies 
p aaa* 

pv2w=; 
i 

awall/ 
Yjyz-YgjYg 3 

i 
i.e., 

wQ$TrrT+x {wTT(r2+r~)-2wT~rBrT+weer2r} 

+ 

These have to be solved in 16 1 < rr, T, < T < TV as shown in Fig. 3. The boundary 
conditions in this new coordinate system are 

r-+coasT-+T, 

r is continuous across T = T, 

$/r= [tjbT/rT]f$fid= Usin 8 at T= TM 

[k/rT]g&‘id + rULp(r, sin 8 + r cos B)/(r’ + rfj) = 0 at T= TM. 
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FIG. 3. The domain of computation. 

The third of these conditions expresses the requirement that both components of 
the velocity vector must be continuous, while the last is the equivalent of (5). The 
conditions at the keyhole are that, at T= Tv, 

r=a 

*TT-$ TrTTcr%Tla. 

The last of these is the equivalent of (4); with the aid of (10) and the previous two 
conditions it can be put in the simpler form 

w = -2$ T/arT. 

The use of the shooting method in connection with the method of lines, presents 
the problem of constructing a suitable strategy which will ensure convergence to the 
correct solution for a large system of ordinary differential equations. Accordingly, 
to solve the above elliptic problem by the method of lines without resorting to 
shooting methods, artifical time derivatives are added to the above equations to 
convert them into parabolic form. They are then integrated from an initial con- 
dition (an estimate of Y( T, 0) and $( T, 0)) until the time derivatives approach zero; 
the left-hand sides of (8) and (9) are therefore equated to &/at and the left-hand 
side of (11) to &o/at. If the signs in front of the time derivatives were changed the 
numerical solution would diverge; Lagrangian differentiation formulae could not be 
used to approximate the derivatives, as errors would be generated during the 
numerical integration. 

The equations in the solid and liquid regions were generated by two subroutines 
written in FORTRAN. In the solid region they were approximated by 20 points in 
the T direction and 20 points in the 8 direction, producing a system of 400 ordinary 
differential equations. The liquid region differed slightly in that 10 points were used 
in the T direction and 20 points in the 8 direction. This produces a system of 
2 x 200 ordinary differential equations, and the factor of 2 arises because there are 
two equations: the Navier-Stokes equation and the heat conduction equation 
describing the liquid region. 
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The boundary conditions are handled by the stagewise differentiation method 
(Schiesser [13]) and the time derivatives at the boundary points are zeroed before 
the subroutines are returned back to the calling program. This is to control error 
waves starting at the boundary points and is discussed further below. In effect the 
boundary points are evaluated algebraically rather than by numerical integration. 

Before the method of lines can be started an estimate of the moving boundary is 
obtained. A steady-state solution is then generated for both the liquid and solid 
regions. Equipped with this solution the moving boundary is then tested to see if a 
preassigned error criterion is satisfied. If it is not, the moving boundary is adjusted 
by a Newton-type iteration scheme of the form 

S(r, ei) is replaced by S(r, ej) + ~(1 + 1 S(r, 0,)l) for i = 1, 2 ,..., 20, 

where S(r, ei) is the boundary function, r the magnitude of the boundary shift, and 
the error E is given by 

c Ic 

[ 1 
Solid 

E= AL- + rUL(r, sin 0 + r cos 0) 

TT Liquid r2 + t-i 

The procedure is repeated until the error criterion is satisfied. 
The equations generated by the method of lines were integrated by one of the 

following integrators. 

(i) Gear-Hindmarsh algorithm [14, 151, i.e., the Gear backward differen- 
tiation formulae for stiff equations. The Jacobian matrix is assumed to be banded 
and is calculated by finite differences, and interpolation is performed to reach the 
end of the print interval. 

(ii) The same as (i), but no interpolation is performed to reach the end of 
the print interval. 

(iii) Gear-Hindmarsh algorithm, with the Jacobian matrix replaced by a 
diagonal approximation based on a directional derivative. Interpolation is perfor- 
med to reach the end of the print interval. 

(iv) The same as (iii), but no interpolation is performed to reach the end of 
the print interval. 

(v) Runge-Kutta-Fehlberg algorithm. 

Since the equations that occur in the mathematical modelling of the laser welding 
process are highly stiff, the Runge-Kutta-Fehlberg method is expensive on com- 
puter time compared to the Gear algorithm. It has nevertheless been included to 
enable a comparison of results to be effected using two different integrator methods, 
and thus serve as a mutual check on each other. 

The accuracy of the method of lines algorithm is governed by the number of 
spatial divisions, the order of the spatial coupling and the truncation error of the 
integration algorithm. The first two dominate the overall error control in the 
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method, and the integration algorithms adjust the integration step so that the local 
truncation error of each variable is below a specified maximum. This error is the 
local error at each integration step, and these errors can accumulate over a number 
of steps to cause a large global error. However in a stable algorithm these errors 
tend to cancel rather than accumulate, so the global error does not grow at an 
unacceptable rate. The latter also depends on the equation-set being solved. 

An increase in the number of spatial divisions increases the accuracy but it also 
increases the stiffness of the resulting set of ordinary diffeential equations, thus 
causing a lower maximum integration step size. Increasing the spatial coupling 
increases the accuracy, but also increases the CPU time required to evaluate higher 
order formulae. Five-point formulae were used to solve the modified form of 
Eqs. (8) and (11) and this represented the optimum trade-off between accuracy and 
CPU time. The overall error in this implementation of the method of lines is 
approximately given by l/N’, where N is the number of grid points defining the dis- 
cretisation. 

In the discretisation of the independent variables using a constant order formula, 
the errors increase by several orders of magnitude from central to border points. 
This is an effect which has been minimised by using higher order formulae at points 
near the boundaries, but there will be a finite nonzero limit to the process of con- 
vergence to the steady state. The values computed for the artificial time derivative 
thus merely represent the closest attainable approach to zero. 

3. IMPLEMENTATION OF THE LASER WELDING MODEL IN FORTRAN 

The laser welding problem as described by the analytical models of [4] and the 
numerical procedure described here were all incorporated in a single program, writ- 
ten to a standard of FORTRAN 10 [16]. 

In the numerical model “infinity” is initially assumed to be located at a distance 
of 10 cm from the keyhole and is adjusted, if necessary, to obtain stability. If the 
welding velocity U is very slow, the initial guess for the moving boundary is 
obtained from the analytical solution. The tolerance prescribed for the numerical 

TABLE I 

The Performance Figures of the Five Integrators Contained in the Program, Using a DEC System 10 

Integration option CPU time Number of iterations 

(i) 7min18.8~ 2 
(ii) 15 min 43.6 s 2 
(iii) 6 min 28.6 s 2 
(iv) 11 min 50.0 s 2 
(v) 40 min 57.7 s 2 

Note. Details of options (iHv) are in the text. 

581/M)/3-13 
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TABLE II 

Values of the Physical Parameters Employed in Calculations for Four Different Metals’ 

Iron Titanium 

TV (“C) 2726 3287 
TM (“C) 1371 1675 
P (g cm-‘) 7.2 4.45 
L (Jg-‘1 266.7 418.7 
l (Jcm-‘s-’ (g cm -ls-1 OC)& 0.0225 0.694 0.0225 0.2 h 

L; (Jcm-‘ss’ (cmzss’) “C-‘) 0.213 0.327 0.0859 O.lh 

KL (cmrs-‘) 0.0551 0.028 h 

L? In all cases the ambient temperature To was taken as 20°C. 
’ Values employed in the absence of detailed measurements. 

Aluminium Lead 

2467 1740 
658.7 327.4 

2.7 11.34 
397.8 23.03 

0.0105 2.37 0.346 0.017 

0.975 1.03 0.0637 0.235 

0.351 0.0407 

integrator is 5.0 x 10 - 5. The error prescribed for the moving boundary is 0.01 and 
the relative shift for the moving boundary is 0.001. The performance figures of the 
integrators are shown in Table I using the values for the physical constants listed in 
the first column of Table II. 

A typical calculation was performed with U = 0.75 cm s - ’ and a = 0.019 cm. The 
value for a is somewhat small for industrial applications, but was chosen for pur- 
poses of comparison with samples provided by the Welding Institute (Cambridge, 
U.K.). The program works equally satisfactorily for larger values. The numbers 
given in the first column of Table II are those appropriate to the material of the 
sample, a mild steel. 

The stream function for the liquid region is shown in Fig. 4 as a 3-dimensional 
plot together with its contour map in Fig. 5. Likewise 3-dimensional plots for the 
temperature in the solid and liquid regions are given, to different scales, in Figs. 6 
and 7, respectively; a contour map for both regions in the vicinity of the keyhole is 
given in Fig. 8. Results for the same value of U, but with a very slightly smaller 
keyhole size (a = 0.015 cm) were obtained for the approximate analytical solution 

FIG. 4. Graph of the stream function in the liquid region for iron with U =0.75 cm s -’ and 
a=O.l9mm. 
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FIG. 5. Streamlines for the same solution; contours are at intervals of 0.761 mm’s ‘. 

and were reported in [4]. A comparison of the figures shown there with the ones 
presented here reveals how closely the two solutions agree. The shape of the liquid 
region as predicted by the analytical solution is superimposed on Fig. 5, and it can 
be seen that they are very close. The greatest difference is that the numerical model 
predicts a shape which extends further downstream, as would be expected in prac- 
tice. 

For comparison purposes, and to enable an assessment to be made of the effect 
of variation of material parameters, numerical solutions were also obtained for 
titanium, aluminium, and lead, for which values of the constants are also shown in 
Table II. Aluminium was chosen as it is the main element in many alloys which are 
welded by lasers in industry. The choice of titanium was determined by the fact that 
it is known to be a very difficult material to weld by conventional means (e.g., TIG 
welding), but is easily welded with a laser. It is a metal that is used widely in high 
technology areas together with stainless steel. Additionally, as a material it has a 

FIG. 6. Graph of the temperature distribution in the solid region 
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FIG. 7. Graph of the temperature distribution in the liquid region. 

very high melting and vapourisation temperature, as well as a high value for the 
latent heat compared with iron. The choice of lead as another material for 
numerical study was suggested by a desire to secure the largest extreme practical 
variation in material parameters possible, as compared with titanium, although it is 
not in fact a practical material for use in laser welding. The constants in question 
for lead are at the opposite extreme from titanium: namely, lead has a very low 
latent heat of fusion as well as a low vapourisation temperature. 

In the analytical model, when the weld velocity U is strictly zero, Laplace’s 
equation for the temperature has an (In r)-type singularity in two dimensions which 
causes a pile-up of heat flux, thus prohibiting the physical realisation of a steady- 
state solution. The numerical program is therefore arranged to terminate for a value 
of U less than 0.01 cm s - ‘. For values of U somewhat greater than this but still 
within the range of validity of the theoretical model, the results obtained by the 
program agreed well with the approximate results obtained by the analytical model. 

u- 

FIG. 8. Isotherms in the liquid and solid regions. Contours are at intervals of 162.5”C and the 
broken line shows the position of the boundary between two regions. 
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The value of the numerical program lies in the fact that it can deal with weld 
speeds for which the analytical model ceases to be valid. There is an upper limit of 
U = 20 cm s ~ i set by a combination of the method used and overflow in floating 
point arithmetic in the machine. This weld speed, however, more than adequately 
covers the range used in practice, which extends from about 0.75, to 5 cm s - I. 

The variation in material constants can best be seen when one fixes the size of the 
keyhole and the weld speed and displays the appropriate moving boundaries for 
several different materials on a single diagram. Figure 9 shows them for titanium, 
iron, aluminium, and lead; note the progressively increasing size of the molten pool 
around the keyhole as one considers these materials in turn. It will be seen that lead 
has a considerably more elongated molten region than the other metals, and it is 
possible that this is due to the fact that its melting temperature is much lower 
relative to its vapourising temperature than is the case for the others. 

Another physical parameter of interest is the power used, and this can be 
obtained by integrating the gradient of the temperature field numerically in the 
liquid region. Table III displays the values of the power for iron over a range of 
weld speeds and includes a comparison with the values for the power provided by 
the analytical model. In all cases the keyhole size is given by a = 0.01 cm. 

In conclusion it remains to note that the models of laser welding presented here 
agree with the experimental welding process in all its general features. In the 
absence of detailed knowledge of all the physical parameters (including their depen- 
dence on temperature) it is not at present possible to secure a more exact com- 
parison with the limited range of experimental measurements available. The 2- 
dimensional models presented here and in [4] are the first to consider the motion 
of the liquid phase in detail and to display the moving boundary in question. The 
good agreement of the numerical model in the range of parameters for which both 

FIG. 9. Shape of the boundaries between the solid and liquid regions for four different metals. In all 
cases U=lcms-‘anda=O.lmm. 
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TABLE III 

Power and Weld Width for Various Values of the Weld Speed, Calculated for Iron and Compared with 
the Values Given by the Approximate Analytical Model [4]; CI = 0.01 cm 

Power Weld width 
(W cm-i) (cm) 

Velocity 
(cmss’) Computed 

Analytical 
model 

0.1 1389 1406 0.1472 0.1450 
0.5 1915 1902 0.0810 0.0865 
0.75 2132 2087 0.0718 0.0759 
1.0 2318 2243 0.0662 0.0693 
2.0 2925 2732 0.0545 0.0554 
3.5 3662 3317 0.0467 0.0463 
5.0 4314 3840 0.0425 0.04 13 

Computed 
Analytical 

model 
- 

are valid is an encouraging check on the analysis underlying the program and on its 
implementation; the inclusion of the liquid phase is an essential step in the direction 
of experimental reality. The availability of a program capable of calculating the heat 
and fluid flow at a range of welding speeds of practical significance opens up the 
way to further experimental and theoretical work. 
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